Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available September 9, 2026
-
Abstract A unified one-dimensional (1D), steady-state flow and heat transfer model is presented for the pipeline transport of fluids at high pressures, including the supercritical (SC) conditions. The model includes a generalized temperature equation, presented here for the first time, and accounts for all of the important effects, including the property variation, viscous dissipation, Joule-Thomson (J-T) cooling, and heat exchange with the surrounding. With appropriate approximations, this model can yield all isothermal and nonisothermal pipe flow solutions reported thus far. A generalized multizone integral method is developed which solves the two resulting algebraic equations for pressure and temperature in conjunction with a property database, such as the National Institute of Standard and Technology (NIST) reference fluid thermodynamic and transport properties (REFPROP). With appropriately selected number and size of the zones and using property values at the mean temperature and pressure within each zone, this integral method can accurately predict the complex effects of the governing parameters, such as the pipe diameter and length, inlet and exit pressures, mass flowrate, J-T cooling, and inlet and surrounding temperatures. Its accuracy for small-to-large diameter pipes has been ascertained by a comparison with the numerical solutions of the differential form of governing equations that requires a large number of small grids along the pipe and the values of mean properties within each grid. Indeed, this integral model can be used for the pipeline transport at both subcritical and supercritical pressures as long as the fluid does not encounter its anomalous states and the phase-change.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract Based on the vertical Total Electron Content (TEC) data observed by the Global Navigation Satellite System in the northern hemisphere, a large area of low plasma density during summer at high latitudes, termed decreased TEC region, was investigated statistically between 2014 and 2024. Compared with the classical depleted structures that usually occur in the nighttime F region at high latitudes during winter, decreased TEC region is usually found in the sunlit polar cap ionosphere during summer. The decreased TEC region is predominantly located in regions above 70° magnetic latitude for moderate and high solar activity. The lower‐TEC region is biased towards the dawn and midnight sectors. Along the 18:25–06:25 Magnetic Local Time meridian, the depth of the decreased TEC region reached 7.6TECu in 2014. The decreased TEC region is deeper for higher Kp (Kp > 2) than for low Kp (Kp ≤ 2).more » « lessFree, publicly-accessible full text available April 28, 2026
-
All fluids exhibit large property-variations near the critical point in a region identified as the anomalous state. The anomaly starts in the liquid and extends well into the supercritical state, which can be identified thermodynamically using the Gibbs free energy (g). The specific heat, isobaric expansion, and isothermal compressibility parameters governing the transitions are: (cp/T), (vβ), and (vκ), rather cp, β, and κ. They are essentially the second-order derivatives of g and have two extrema (minimum, maximum); only maxima reported ever. When applied to the van der Waals fluid, these extrema exhibit closed loops on the phase-diagram to satisfy d3g = 0 and map the anomalous region. The predicted liquid-like to gas-like transitions are related to the ridges reported earlier, and the Widom delta falls between these loops. Evidently, in the anomalous region, both the liquid and the supercritical fluid need to be treated differently. Beyond the anomalous states, the supercritical fluids show monotonic, gradual changes in their properties. The analysis for argon, methane, nitrogen, carbon dioxide, and water validates the thermodynamic model, supports the stated observations, and identifies their delimiting pressures and temperatures for the anomalous states. It also demonstrates the applicability of the law of corresponding states. Notably, the critical point is a state where d3g = 0, the anomaly in the fluid's properties/behavior is maximal, and the governing parameters approach infinity. Also the following are presented: (a) the trajectory of the liquid–vapor line toward the melt-solid boundary and (b) a modified phase diagram (for water) exhibiting the anomalous region.more » « less
-
Compressible viscoelasticity of cell membranes determined by gigahertz-frequency acoustic vibrationsMembrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis.more » « less
-
Understanding the mechanism of crop response to nitrogen (N) deficiency is very important for developing sustainable agriculture. In addition, it is unclear if the microRNA-mediated mechanism related to root growth complies with a common mechanism in monocots and dicots under N deficiency. Therefore, the root morpho-physiological characteristics and microRNA-mediated mechanisms were studied under N deficiency in wheat (Triticum aestivumL.) and cotton (Gossypium hirsutumL.). For both crops, shoot dry weight, plant dry weight and total leaf area as well as some physiological traits, i.e., the oxygen consuming rate in leaf and root, the performance index based on light energy absorption were significantly decreased after 8 days of N deficiency. Although N deficiency did not significantly impact the root biomass, an obvious change on the root morphological traits was observed in both wheat and cotton. After 8 days of treatment with N deficiency, the total root length, root surface area, root volume of both crops showed an opposite trend with significantly decreasing in wheat but significantly increasing in cotton, while the lateral root density was significantly increased in wheat but significantly decreased in cotton. At the same time, the seminal root length in wheat and the primary root length in cotton were increased after 8 days of N deficiency treatment. Additionally, the two crops had different root regulatory mechanisms of microRNAs (miRNAs) to N deficiency. In wheat, the expressions of miR167, miR319, miR390, miR827, miR847, and miR165/166 were induced by N treatment; these miRNAs inhibited the total root growth but promoted the seminal roots growth and lateral root formation to tolerate N deficiency. In cotton, the expressions of miR156, miR167, miR171, miR172, miR390, miR396 were induced and the expressions of miR162 and miR393 were inhibited; which contributed to increasing in the total root length and primary root growth and to decreasing in the lateral root formation to adapt the N deficiency. In conclusion, N deficiency significantly affected the morpho-physiological characteristics of roots that were regulated by miRNAs, but the miRNA-mediated mechanisms were different in wheat and cotton.more » « less
An official website of the United States government
